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1 Relationships Between The Lorentz Quasinorms and L?
Norms
1.1 Order of growth of Lorentz quasinorms in terms of L” and ¢4

Last time, we had the quasinorm
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Remark 1.1. Tt |g| < ||, then g5 < | fIlf0

Proposition 1.1. If f € LP9(R?) for 1 < p < oo and 1 < q < oo, write f = > mez Jm
where fr(r) = f(2)1{zam<|f(a)|<2m+1y(®). Then
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Proof. Both sides only concern |f], so it suffices to prove this for f > 0. Then
2" om<p@y<amsty < Jm < 2 Lgme pa <om iy

Thus, by our previous remark, we may assume that f = >, 2"1p, , where F, are
measurable, pairwise disjoint sets.
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We wanted to show that || f||7,q, ~ H2m]Fm|1/p||ggn. So we just need to show that

(i),
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~ H2m]Fm]1/p||%. We have the > direction, so we just need the

other inequality:
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Now reindex the ¢ sum by n = m + k.
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1.2 Lorentz spaces are Banach spaces
Lemma 1.1. Let 1 < ¢ < oo, and let S C 2%, the dyadic integers. Then
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In other words, if we’re summing dyadic series, when we take the L? norm, it doesn’t
really matter whether we have the ¢ inside or outside the sum.

Theorem 1.1. For 1 <p < oo and 1 < q < o0,

1150~ sup { | [ srate) o] <ol <1}

Thus, || - ||7p.q s equivalent to a norm, with respect to which LP4(RY) is a Banach space.
Moreover, for q # oo, the dual of LP? is LY under the natural pairing.



Remark 1.2. For p = 1,q # 1, there cannot be a norm equivalent to || - [|7.,. Let’s see

this for ¢ = oo and d = 1. Assume, towards a contradiction, that || - ||*Ll,oo ~ |Ill. Let
f@) =N ki for N> 1. Then
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Then we have
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We claim that {z: > 1 > log N} D [0,N]. If £ =0, then ) 1/n > log(N +1) >

n=1 |z—n|

%log N. Now do the same with x = 1,2 = 2,.... The worst case scenario is when
x ~ N/2, but the inequality holds in this case, too. So we have
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Let N — oo to get a contradiction.
Now let’s prove the theorem.

Proof. We may assume f > 0, g > 0. As both sides are positive homogeneous, we may
assume that | f||5,, = 1. We may assume f = ) 2"1lp, and g = > 2"1g, with F,
measurable, pairwise disjoint and FE,, measurable, pairwise disjoint. Then
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By the lemma,
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Similarly,
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By Holder’s inequality,
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Now we just need oz % < 1. This comes from
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as we get a geometric series.! O

'Instead of using Holder’s inequality and the subsequent steps, we could alternatively use Schur’s test
for convergence of series. This kind of argument will be common in this course.
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